
Maintaining a UPS Database 11-1

Chapter 11: Maintaining a UPS Database

In this chapter we assume that you have UPS/UPD installed and that you have
a working database and products area. We provide instructions and examples
for performing the following functions:

• declaring product instances to a database

• declaring, removing and changing chains

• removing product instances

• verifying the integrity of a product instance

• modifying information in a database file

• determining if a product needs to be updated

• updating a table file or ups directory

• retrieving an individual file from a distribution node

• checking product accessibility

• troubleshooting

To get command usage information or on-line help, use the following
resources:

• Refer to Part VI of this guide (in GU0014A), Command Reference,
especially Chapter 23: UPS Command Reference.

• Run the command with "-?", e.g., ups declare "-?"1.

• Man pages are also provided; use an underscore with the UPS command
when running man, e.g., man ups_declare.

11.1 Declare an Instance

A product instance must exist on the system before it can be declared to a UPS
database2. Product declaration is done with the ups declare command.
Declaring a product instance makes it known to UPS, and therefore retrievable

1. The double quotes are necessary for C shell users; -? is interpreted by sh.
2. At least a rudimentary root directory hierarchy for the product, its table file directory
and table file must exist before declaration.

11-2 Maintaining a UPS Database

within the UPS framework. Normally products are installed on user nodes
using the upd install command which, in addition to downloading and
installing the product, runs ups declare to make the initial declaration of
the product to the local UPS database. If you use FTP to download a product,
then you’ll need to declare it manually. Refer to Chapter 8: Installing
Products using FTP for details about installing with FTP.

If you use upd install and you have more than one database, refer to
section 6.3 How UPD Selects the Database to see how UPD determines the
database for the declaration.

11.1.1 The ups declare Command

Before declaring, make sure the product is unwound into in its final location.
Also make sure that you’ve downloaded the table file and installed it in an
appropriate directory. For an initial declaration you must specify at a
minimum: the product name, product version, product root directory, flavor
and table file name1.

The full command description and option list is in the reference section 23.5
ups declare. Here we show commonly used command options (see the notes
regarding -z, -U and -M which follow):

% ups declare <product> <version> -r /path/to/prod/root/dir/ \
-f <flavor> [-z /path/to/database] [-U /path/to/ups/dir] \
[-m <table_name>.table] [-M /path/to/table/file/dir] \
[<chainFlag>]

1) If the database is not specified using -z, UPS declares the product into
the first listed database in $PRODUCTS (see section 27.1 Database
Selection Algorithm for more information).

2) If the product's ups directory tar file was unwound in the default
location ($<PRODUCT>_DIR/ups), then -U
/path/to/ups/dir is not needed. If the ups directory is located
elsewhere (or named differently), this specification must be included. If
specified as a relative path, it is taken as relative to the product root
directory.

3) If the product's table file was placed in either of the two default locations
(under /path/to/database/<product>/ or in the product's
ups directory), then -M /path/to/table/file/dir is not
needed. Only use the -M option if you have moved the table file to a
separate location where UPS won't otherwise find it. If specified as a
relative path, it is taken as relative to the product root directory. See

1. Two exceptions: (1) if the product consists only of a table file that sets up a list of
dependencies, there is no product root directory; and (2) if the product has no table file
(very rare) then there is no table file name.

Maintaining a UPS Database 11-3

section 29.4 Determination of ups Directory and Table File Locations
for details on how UPS finds the table file.

Unless the product you’re declaring has no table file (true for very few
products), make sure its location gets declared properly, either explicitly or by
default. Otherwise, users will need to specify its name and location on the
command line every time they want to run or operate on the product. If it is
neither declared nor specified on the command line, UPS/UPD assumes there
is no table file.

You can opt to declare a chain to the product instance at this time or in a later
declaration. To declare a chain, include the appropriate chain flag in the
command (see section 2.3.5 Chains for a listing). This is described in section
11.2 Declare a Chain.

11.1.2 Examples

Additional examples are included in the reference section 23.5 ups declare.

Declaration of New Product to Non-default Database

The following command shows a fairly typical product declaration. We’ll
install a product called histo v4_0 onto a SunOS+5 node. We assume the
product instance’s ups directory is maintained under its product root
directory, and that it contains the table file. We include the -z option to
indicate that we want to override the default database selection. This is the
first instance of this product to be declared to this database, therefore the ups
declare command automatically creates the appropriate product directory
under the specified database:

% ups declare histo v4_0 -f SunOS+5 -m histo.table -z $MY_DB -r\
/path/to/products/SunOS+5/histo/v4_0

We can run a ups list -l command to see all the declaration information
(include -a because it’s not yet declared current):

% ups list -alz $MY_DB histo

DATABASE=/path/to/ups_database/declared

 Product=histo Version=v4_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

 Declared="1998-04-17 22.08.30 GMT"

 Declarer="aheavey"

 Modified="1998-04-17 22.08.30 GMT"

 Modifier="aheavey"

 Home=/path/to/products/SunOS+5/histo/v4_0

 No Compile Directive

 Authorized, Nodes=*

 UPS_Dir="ups"

11-4 Maintaining a UPS Database

 Table_Dir=""

 Table_File="v4_0.table"

 Archive_File=""

 Description=""

 Action=setup

 prodDir()

 setupEnv()

addalias(histo,${UPS_PROD_DIR}/bin/histo)

addalias(hsdir,${UPS_PROD_DIR}/bin/hsdir)

envSet(HISTO_INC,${UPS_PROD_DIR}/include)

Declaration of Additional Instance of a Product

In the following example we declare an additional instance of histo, of the
same version, but for the flavor IRIX+5. Again the table file resides under the
product root directory’s ups subdirectory, and we override the default
database. This time we declare it with the chain “test” (-t):

% ups declare histo v4_0 -tf IRIX+5 -m histo.table -z $MY_DB -r\
/path/to/products/IRIX+5/histo/v4_0

Maintaining a UPS Database 11-5

Running a ups list -a to see what the database now contains for this
product, we find:

% ups list -az $MY_DB histo

DATABASE=/path/to/ups_database/declared

 Product=histo Version=v4_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

 Product=histo Version=v4_0 Flavor=IRIX+5

 Qualifiers="" Chain=test

Declaration with Table File Located in Database

Depending on your configuration, you may want the table file to reside in the
product’s subdirectory under the database (e.g.,
$PRODUCTS/<product>/<table_file>).

A table file for the product must be placed in its permanent location before the
instance is declared to the database. Therefore, if you are declaring the first
instance of a product to the database, you need to manually create the product
directory under the database and copy the table file into it before declaring the
instance.

You still do not need to specify the table file location (-M option) on the ups
declare command line; UPS will find it here.

11.2 Declare a Chain

Chains are described briefly in section 2.3.5 Chains, and in detail in Chapter
30: Chain Files. A chain can be declared when the product instance is initially
declared to the database (see section 11.1 Declare an Instance), or at a later
time.

11.2.1 The ups declare Command with Chain Specifica-
tion

To add a chain to a product instance, use the ups declare command with
a chainFlag option. The chainFlag option can be one of the standard
ones: -c, -d, -n, -o, or -t. chainFlag can also be replaced by -g
chainName, where chainName is either one of the standard chain names,
e.g., -g current, or a user-defined one. The full command description and
option list is in section 23.5 ups declare. Here are some examples:

% ups declare -c [<other options>] <product> <version>

11-6 Maintaining a UPS Database

% ups declare -g current [<other options>] <product> <version>

% ups declare -g my_chain [<other options>] <product> <version>

Declaring a chain is generally allowed on any node of a cluster, however if the
corresponding chain action in the table file includes any node-specific or
flavor-specific functions,1 we strongly recommend that you declare the chain
from that node, or from a node of that flavor to avoid mismatches. This should
be noted in the INSTALL_NOTE file if it’s necessary.

To include a chain in the initial declaration, simply add a chain option to the
instance declaration as described in section 11.1 Declare an Instance. To add a
chain to a previously declared product instance, include only the options
required to identify the product instance and the chain option, e.g.,:

% ups declare -c <product> <version> [-f <flavor>] \
[-z <database>]

In general, this does not change any existing chain, it adds a new one.
However, if you have an instance already chained, and you wish to declare a
new instance of a different version but the same flavor/qualifier pair to the
same chain, the pre-existing chain will be removed automatically. In other
words, UPS ensures that a chain for a particular flavor/qualifier pair is unique.

A couple of examples will help to clarify how this works. In these examples
we assume that the product instance has previously been declared to the
database either with no chain or with a different chain. Some of these
commands will also work for declaring an instance initially to the database
with a chain, however we refer you to section 11.1 Declare an Instance for
examples specific to that operation.

11.2.2 Examples

Declare an Instance to the Database as test

In a typical situation, a product instance is initially declared as test (-t) to the
default database, to be made current at a later date. In this example, we make
an initial declaration as “test” of the product histo version v4_0, flavor
IRIX+5, located in /usr/products/IRIX+5/histo/v4_0, with the
table file name v4_0.table:

% ups declare -tr /usr/products/IRIX+5/histo/v4_0 -f IRIX+5 \
-m v4_0.table histo v4_0

We verify the declaration using ups list -l -a:

% ups list -la histo -f IRIX+5

DATABASE=/path/to/ups_database/declared

1. Actions are described in Chapter 34: Actions and ACTION Keyword Values, functions
in Chapter 35: Functions used in Actions, and table files in Chapter 36: Table Files.

Maintaining a UPS Database 11-7

 Product=histo Version=v4_0 Flavor=IRIX+5

 Qualifiers="" Chains=test

 Declared="1998-04-17 22.27.16 GMT:1998-04-17
22.27.16 GMT:1998-

 Declarer="aheavey:aheavey"

 Modified="1998-04-17 22.27.16 GMT:1998-04-17
22.27.16 GMT:1998-

 Modifier="aheavey:aheavey"

 Home=/path/to/products/IRIX+5/histo/0

 No Compile Directive

 Authorized, Nodes=*

 UPS_Dir="ups"

 Table_Dir=""

 Table_File="v4_0.table"

 Archive_File=""

 Description=""

 Action=setup

 prodDir()

 setupEnv()

addalias(histo,${UPS_PROD_DIR}/bin/histo)

addalias(hsdir,${UPS_PROD_DIR}/bin/hsdir)

envSet(HISTO_INC,${UPS_PROD_DIR}/include)

Notice that DECLARED, DECLARER, MODIFIED and MODIFIER all have
two values. The first value is for the declaration to the database, the second is
for the test chain declaration. In the following example, you will see that these
fields acquire a third value when the chain is changed.

Change instance from test to current

Once testing is complete and successful, you will want to take the product
instance out of test and declare it as current. For the product instance of the
previous example, we issue the command:

% ups declare -c histo v4_0 -f IRIX+5

This adds the current chain, but it does not remove or modify the test chain.
(To remove the test chain, see the instructions in section 11.3 Remove a Chain.)
Verify using ups list:

% ups list -a histo -f IRIX+5

 Product=histo Version=v4_0 Flavor=IRIX+5

 Qualifiers="" Chains=test,current

If we use the long form, we see the additional declaration and modification
userid and time (output edited for brevity):

11-8 Maintaining a UPS Database

% ups list -la histo -f IRIX+5

DATABASE=/path/to/ups_database/declared

 Product=histo Version=v4_0 Flavor=IRIX+5

 Qualifiers="" Chains=test,current

 Declared="1998-04-17 22.27.16 GMT:1998-04-17
22.27.16 GMT:1998-04-18

22.00.16 GMT

 Declarer="aheavey:aheavey:aheavey"

 Modified="1998-04-17 22.27.16 GMT:1998-04-17
22.27.16 GMT:1998-04-18

 22.00.16 GMT

 Modifier="aheavey:aheavey:aheavey"

 ...

Change current Chain to Point to a New Instance

Another frequently encountered situation is that in which you already have a
version chained to current and you want to declare a different version of the
product as current for the same flavor. We’ll use the previous example histo
v4_0, and declare version v4_1 as current:

% ups declare -c histo v4_1 -f IRIX+5

The previously current instance for this flavor/qualifier pair now has no current
chain. Any other chains it may have had (test, in this case) remain unchanged.

11.3 Remove a Chain

To remove a chain from a product instance, you can use the ups
undeclare command, or you can simply remove the chain file, or the
portion of it that relates to the instance in question. It is usually easier and less
error-prone to use the ups undeclare command. The full command
description and option list is in section 23.19 ups undeclare.

Maintaining a UPS Database 11-9

The ups undeclare command has a simple syntax for removing chains:

% ups undeclare <chainFlag> <product> [-f <flavor>] \
[<other options>]

Do not include the version in the command; it is incompatible with including
the chain, and may result in removing the product declaration! We recommend
always including the -f <flavor> option if you have a multi-flavored
database.

As an example, let’s remove the current chain from the current instance of
ximagetools. Running ups list before and after, we should see the
current chain disappear:

% ups list -K+ ximagetools

"ximagetools" "v4_0" "NULL" "" "current"

% ups undeclare -c ximagetools -f NULL

% ups list -aK+ ximagetools

"ximagetools" "v4_0" "NULL" "" ""

If multiple flavor/qualifier pairs have the same chain and thus share the chain
file in question (in which case you must specify the flavor/qualifier
information on the command line), only the portion of the file relating to the
specified instance will get removed; the file itself will not be deleted.

11.4 Change a Chain

In general, changing the chain to a product instance requires removing the
pre-existing chain (see section 11.3 Remove a Chain) and adding a new one
(see section 11.2 Declare a Chain). There is no way to directly change a chain.

When a current instance of a product already exists, if you declare a new
instance of a different version but of the same flavor/qualifier pair as current,
the current.chain file contents changes to point to the new version.
This is true for any chain value, not just for current.

11.5 Undeclare and Remove an Instance

To undeclare a product instance means to remove all information pertaining to
it from the UPS database in question. The information that gets removed
includes:

• the version file, or the portion of the version file, that pertains to the
instance

11-10 Maintaining a UPS Database

• any chain files, or the portions of any chain files, that pertain to the
instance

The command ups undeclare is provided for this operation. You can opt
to remove the actual product in the product instance’s root directory, as well,
by using either the -y or -Y option, as described in section 11.5.1 Using
ups undeclare to Remove a Product. The ups undeclare command
executes ups unconfigure by default (see section 4.6.1 Configuring a
Product). The unconfigure process can be suppressed by using the -C option
with ups undeclare, however normally you want this process to execute.
The full ups undeclare command description and option list is in section
23.19 ups undeclare.

It is also possible to configure UPP to remove a product automatically. This is
discussed in section 11.5.3 Using UPP to Remove a Product.

Before removing anything, you should find out if any other products have the
product instance in question declared as a dependency.1 If so, you may want to
reconsider removing it. Removal of the product instance may affect the
operation of its parent products.

11.5.1 Using ups undeclare to Remove a Product

To remove a product instance, you must specify the version of the instance, not
its chain, in the ups undeclare command. Specifying the chain removes
only that chain, not the instance itself.

Using ups undeclare is the recommended procedure for removing
product instances. Removing them manually does not ensure that all the
files get deleted or that chains get updated properly, which can lead to a
fragmented products area.

If you choose to completely remove the product, and you want to delete the
product instance’s directory tree starting from its root directory, use one of the
options -y or -Y with ups undeclare (-y queries you for
confirmation, -Y does not). We recommend always including the -f
option if you have a multi-flavor database. You may also need to include the
-z option if you have more than one database. The command syntax is
(showing commonly used options):

% ups undeclare [-f <flavor>] [-q <qualifierList>] [-y|Y] \
[-z <database>] <product> <version>

Special case: If a product has a CONFIGURE action that modifies files
outside of its product root directory, and if this instance is used by more than
one node, flavor or file system, then you may need to run ups undeclare

1. The ups parent command will provide this information. The command is not
available as of UPS version v4_5_2; it is planned for a future release.

Maintaining a UPS Database 11-11

or ups unconfigure on all of the nodes before removing the product
files on any node. The INSTALL_NOTE file should indicate if this is the
case. If you’re not sure, check in the product’s table file.

Example 1

In this first example, we remove the product tcl v7_6a. We undeclare it and
opt to remove the product root directory after query, taking a “snapshot” before
and after. First, verify the declared instances of tcl in the database:

% ups list -aK+ tcl

"tcl" "v8_0_2" "IRIX+5" "" "current"

"tcl" "v7_6a" "IRIX+5" "" ""

Next verify the product root directory contents (run setup to set
$TCL_DIR, check contents of the tcl products area, and then list contents of
$TCL_DIR):

% setup tcl v7_6a

% cd $TCL_DIR/../ ; ls -l

total 8

drwxrwxr-x 9 aheavey g020 140 Sep 15 15:29 v7_6a/

drwxrwxr-x 9 aheavey g020 4096 Sep 8 15:50 v8_0_2/

% cd v7_6a ; ls -l

total 40

-rw-r--r-- 1 aheavey g020 165 May 1 1997
BUILD_INFO

-rw-r--r-- 1 aheavey g020 5861 May 1 1997
Makefile

drwxrwxr-x 2 aheavey g020 83 Sep 15 15:29 alt-ups

drwxrwxr-x 2 aheavey g020 40 Sep 15 15:29 bin

...

Now undeclare tcl v7_6a and remove its product root directory structure. The
-y option queries before removing, and we respond “y” for yes (one would
enter “n” for no):

% ups undeclare -f IRIX+5 tcl v7_6a -y

Product home directory -

 /export/home/t1/aheavey/upsII/products/tcl/v7_6a/

Delete this directory?y

Once it finishes, verify the deletion:

% ups list -aK+ tcl

"tcl" "v8_0_2" "IRIX+5" "" "current"

% cd $TCL_DIR/../ ; ls -l

total 8

11-12 Maintaining a UPS Database

drwxrwxr-x 9 aheavey g020 4096 Sep 8 15:50 v8_0_2

We see that the declaration was removed and the v7_6a directory is gone
from the tcl product area.

Example 2

The following command is a dangerous example! We include it as a caution.
It finds the best flavor match using the standard instance selection algorithm
(see section 27.2 Instance Matching within Selected Database) and removes
that instance of the product pine version v3_91 and any chains that point to it.
It also removes the product root directory for this instance of pine; it does not
query for confirmation before doing so.

% ups undeclare -Y pine v3_91

Depending on the instances you have in your database, you may end up
removing the instance for, say, OSF1+V3 when you really wanted to remove
the one for OSF1!

11.5.2 Undoing Configuration Steps

There is a ups unconfigure command for undoing configuration steps,
described in section 23.18 ups unconfigure. Normally this command does not
need to be run explicitly; the ups undeclare command undoes the
reversible configuration operations by default.1 Refer to the
INSTALL_NOTE file for instructions.

11.5.3 Using UPP to Remove a Product

It is possible to configure UPP to remove a product automatically. To do this
you must create or edit a subscription file for UPP, which is documented in
Chapter 33: The UPP Subscription File. Within the file you identify the
instance(s), set a condition to trigger its removal, and provide the instruction to
remove it.

There are two conditions that UPP recognizes:

• a new version of the product is available on the distribution node

• the chain on the specified product instance changes

1. When a product is undeclared, any steps in the table file under ACTION=UNCONFIG-
URE get executed by default, or the (reversible) functions under ACTION=CONFIGURE
get undone. These concepts are explained in section 34.2.2 “Uncommands” as Actions.

Maintaining a UPS Database 11-13

The appropriate instruction to use for removing a product is delete, as
documented in section 33.2.2 Conditions and Instructions. When the
condition is met, UPP executes ups undeclare -Y for you (which
removes the product root directory structure in addition to the declaration).

Here we provide a sample subscription file stanza for removing a product
when its current chain gets removed on the server (we include the notify
function in addition to delete, which is always a good idea):

11.6 Verify Integrity of an Instance

The ups verify command checks the information in all the database files
for the specified instance in order to determine if there are any errors or
inconsistencies. The full command description and option list is in section
23.20 ups verify. Shown here with some commonly-used options, the
command syntax is:

% ups verify -a <chainFlag> [-f <flavor>] <product> \
[<version>]

 product = exmh Identify subscribed product as exmh (the exmh versions
remain unspecified in this example, therefore act on all ver-
sions for the flavor specified below).

 flavor =
SunOS+5.5

Identify flavor of product (this is optional)

 action =
uncurrent

List in the following lines one or more functions to perform
when an instance of the listed product-flavor combination is
unchained from current on the server.

 notify Send a notification message to <userid>@fnal.gov
(specified in file header)

 delete Remove the instance (declaration and product root direc-
tory) from the local node.

11-14 Maintaining a UPS Database

Here is sample output for a product for which several files and directories
listed in the version file were not found (-a is included to match all
instances):

% ups verify -a blt

DATABASE=/path/to/upsdb

WARNING: File not found - /myman/

WARNING: File not found - /mycatman

WARNING: File not found - /myinfo/

WARNING: File not found - /myhtml/

WARNING: File not found - /mynews/

WARNING: File not found - /path/to/upsdb/.updfiles

INFORMATIONAL: Verifying product ’blt’

WARNING: File not found - /usr/products/IRIX/blt/v2_1

WARNING: File not found - /usr/products/IRIX/blt/v2_1/ups

11.7 Modify Information in a Database File

The ups modify command allows you to manually edit any of the
database product files. It runs ups verify on the instance to perform
syntax and content validation before and after the editing session. The full
command description and option list is in section 23.12 ups modify. The
command syntax with some commonly used options is:

% ups modify <product> [<version>] [-E <editor>] [<chainFlag>]\
[-N <fileName>] [-z <database>]

ups modify performs the following steps (if you specify the file using -N,
the menu will not appear):

• presents menu of files that you can edit and asks you to either select one
or quit

• verifies pre-modification contents of file (runs ups verify)

• starts up the editor given by -E <editor> or, if that is not specified,
then $EDITOR, if set. If neither is specified, it starts up vi by default.

• makes a copy of the file to be edited

• pulls copy of file into the editor

• after user exits the editor, runs ups verify on the edited file

• if the validation succeeds, writes the new file over the old one and quits

• if the validation does not succeed, provides informational messages, asks
if you want to save changes, and quits

• if no changes made to file, again presents menu of files

Maintaining a UPS Database 11-15

Sample Session with (1) Unsuccessful and (2) Successful Validation

% ups modify teledata v1_0 -N $MYDB/teledata/v1_0.version

In this example, we select the version file (via -N) for the product teledata
v1_0 (default flavor, no qualifiers). Since -E is not given, UPS will use the
editor set in $EDITOR, or vi if that variable is not set. First, UPS runs ups
verify and produces the output:

Pre modification verification pass complete.

No errors were detected. The version file is next displayed in the editor.

1) To illustrate an unsuccessful validation, we add a bogus line:
 TESTKEYWORD = value

 and save and quit. UPS returns the following messages, and we opt to
save the erroneous change:

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in
’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in
’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

Post modification verification pass complete.

Do you wish to save this modification [y/n] ? y

 UPS quits, saving the file as we requested.

2) To illustrate successful validation, we’ll correct the error introduced
above. We run the same ups modify command. UPS finds the
error during the pre-edit validation:

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in
’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in
’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

Pre modification verification pass complete.

 We remove the incorrect line from the version file, then save and quit.
UPS displays the following message, and we elect to save the change (y):

Post modification verification pass complete.

Do you wish to save this modification [y/n] ? y

 UPS quits, saving the file as requested.

Sample Session with No Changes

In this example, we select the current instance of the product teledata, and (by
default) request a menu of files to edit:

11-16 Maintaining a UPS Database

% ups modify teledata

[0] /home/t1/aheavey/upsII/declared/teledata/current.chain

[1] /home/t1/aheavey/upsII/declared/teledata/v1_0.version

[2]
/export/home/t1/aheavey/upsII/products/teledata/v1_0//ups/v1
_0.table

[3] /home/t1/aheavey/upsII/declared/.upsfiles/dbconfig

Choose file to edit [0-3] or ’q’ to quit: 1

Pre modification verification pass complete.

UPS starts up the editor and makes the selected file available to edit. We quit
without making any changes. UPS displays the message:

No modifications, nothing to save.

UPS then displays the menu again, and we opt to quit:
[0] /home/t1/aheavey/upsII/declared/teledata/current.chain

[1] /home/t1/aheavey/upsII/declared/teledata/v1_0.version

[2]
/export/home/t1/aheavey/upsII/products/teledata/v1_0//ups/v1
_0.table

[3] /home/t1/aheavey/upsII/declared/.upsfiles/dbconfig

Choose file to edit [0-3] or ’q’ to quit: q

11.8 Determine If a Product Needs to be
Updated

UPP can be configured on a local machine to alert users via email when a
newer version of a product is available in KITS, or when a product instance’s
table file or ups directory needs to be updated. If your installation is not
configured to do this, you can use UPD interactively to find this information.

11.8.1 Using UPP

UPP can be used for several functions as described briefly in section 2.1
Introduction to UPS, UPD and UPP, and in detail in Chapter 33: The UPP
Subscription File. For instructions on how to configure UPP to notify you
regarding a product, see Chapter 33 or 11.5.3 Using UPP to Remove a Product.

Maintaining a UPS Database 11-17

11.8.2 Using UPD

To determine if you need to reinstall a product, use the upd install
command with the -s option, as shown, while logged on to a node of the
flavor you wish to check (or use the -H option to specify a different flavor).
The full command description and option list is in the reference section 24.8
upd install.

% upd install -sv <product> [<version>] [-h <host>] \
[-H <flavor>]

If it’s ok, you’ll see no output. If there’s a discrepancy between what’s on your
node and what’s on fnkits (or on the host specified using -h), you’ll see output
of the form:

Installing <product>

I would make directory /path/to/<product>/<flavor>/<version>

I would fetch directory <kitsflavor> from

ftp://fnkits.fnal.gov//ftp/products/<product>/<version> as

/path/to/<product>/<flavor>/<version> now

...

Although it says “Installing”, it’s only telling you what it would have to do in
order to install.

If you are interested in knowing only if the product’s table file or ups
directory has been changed on the server and needs an update on your
machine, use the upd update -s command. It compares the MODIFIED
dates in the remote and local nodes. The full command description and option
list is in the reference section 24.13 upd update.

% upd update -s <product> [<version>] <component> \
[-H <flavor>]

The argument <component> can take the value table_file or
ups_dir, or both, colon-separated. If no update is needed, there is no output.
If an update is needed, the messages will inform you.

11.9 Update a Table File or ups Directory

The upd update command is used to update a product’s table file and/or
ups directory. It operates on the specified product instance and its
dependencies by default. It retrieves the specified components from a
distribution node and downloads them to the local node, overwriting the
corresponding pre-existing component(s). The full command description and
option list are in section 24.13 upd update. The command syntax with some
commonly used options is:

11-18 Maintaining a UPS Database

% upd update <product> [<version>] <componentList> \
[-H <flavor>] [<chainFlag>] [-h <host>] [-i] [-j]

In the following example, we overwrite the table file for the product instance
xntp v3_4, flavor SunOS. This operation will succeed if the MODIFIED date
in the remote version file that points to the table file on the distribution node is
later than that in the comparable local version file; no overwrite will occur
otherwise. Before running upd update, we compare the MODIFIED dates
for the product by using a ups list command like the following:

% ups list -f SunOS -K MODIFIED xntp v3_4

":1998-04-01 20.08.02 GMT"

on the local node, and running upd list with similar options on the
distribution node (the default fnkits is used here):

 % upd list -H SunOS -K MODIFIED xntp v3_4

"1998-09-10 08.13.07 GMT"

The MODIFIED date in the remote version file is later than that in the local
version file, therefore we expect an update to occur.

Now we run the ups update command requesting the component
table_file:

% upd update table_file xntp v3_4 -H SunOS

updcmd::updcmd_update - Updating xntp.

upderr::upderr_syslog - successful transfer

ftp://fnkits.fnal.gov///ftp/upsdb/xntp/v3_4SunOS.table ->
/tmp/mwmdb/xntp/v3_4.table

upderr::upderr_syslog - successful ups touch xntp v3_4 -f
SunOS -q "" -U ""

Rerun the ups list command to verify that the MODIFIED date changed,
indicating that the update took place.

To update several instances of xntp v3_4 for a list of flavors, use the -H
option like this:

% upd update table_file xntp v3_4 -H SunOS:IRIX:OSF1:Linux

Using -H ensures that all the dependencies are updated with the appropriate
flavor rather than with the best match flavor to the local machine.

Note: When updating several instances at a time, you can exclude a particular
instance from being updated by running ups touch on it. See the
reference section 23.17 ups touch for more information.

Maintaining a UPS Database 11-19

11.10 Retrieve an Individual File

The upd fetch command retrieves a single file or directory maintained in
a UPS distribution database, and downloads it to the user node, placing it
relative to the current working directory. The -J option is used to specify the
individual filename to fetch. If -J is omitted, the output is a recursive list of
directories and files that are available for individual retrieval. Nothing actually
is retrieved when -J is omitted. The full command description and option
list is in section 24.6 upd fetch. The command syntax with some commonly
used options is:

% upd fetch [-H <flavor>] [<chainFlag>] [-h <host>] \
[-J fileName] <product> [<version>]

First we issue the upd fetch command without the -J option to find out
what files are available for the specified product instance (output edited for
brevity):

% upd fetch -H IRIX+6.2 rbio v9_3d

Listing of table_dir [/ftp/products/rbio/v9_3d/IRIX+6.2]:

total 3172

drwxrwx--- 3 updadmin upd 512 May 7 1999
rbio_v9_3d_IRIX+6.2

-rw-rw-r-- 1 updadmin upd 1235 May 7 1999
rbio_v9_3d_IRIX+6.2.table

-rw-rw---- 1 updadmin upd 1597440 May 7 1999
rbio_v9_3d_IRIX+6.2.tar

-rw-rw-r-- 1 updadmin upd 14848 May 7 1999
rbio_v9_3d_IRIX+6.2.ups.tar

rbio_v9_3d_IRIX+6.2:

total 6

-rw-rw-r-- 1 updadmin upd 1540 May 7 1999 README

drwxrwsr-x 5 updadmin upd 512 May 7 1999 ups

rbio_v9_3d_IRIX+6.2/ups:

total 28

-rw-rw-r-- 1 updadmin upd 210 May 7 1999 Version

...

rbio_v9_3d_IRIX+6.2/ups/toInfo:

total 0

...

Now we use upd fetch -J to retrieve the README file listed. The file
will be copied to the current working directory:

% upd fetch -J README -H IRIX+6.2 rbio v9_3d

informational: transferred README

11-20 Maintaining a UPS Database

 from
fnkits.fnal.gov:/ftp/products/rbio/v9_3d/IRIX+6.2/rbio_v9_3d
_IRIX+6.2

 to ./README

To verify the successful transfer, we check the current working directory for
the new file:

% ls -l README

-rw-rw-r-- 1 aheavey g020 1540 Sep 7 15:57 README

As another example, you can retrieve the table files for several flavors of a
product. When specifying the flavors on the remote node, be sure to use -H,
not -f:

% upd fetch -H SunOS+5:IRIX+6:Linux+2:OSF1+V4 -J @table_file \
tex v3_14159

This command retrieves the table file(s) for the best match product instances of
tex v3_14159 for the listed flavor families. Depending on how the product
was configured, the same table file may be used for all, or they may be separate
files. The file(s) will be copied to the current working directory.

11.11 Check Product Accessibility

The ups exist command is used to test whether a setup command
issued with the same command line elements is likely to succeed. It checks for
a properly declared matching instance, and verifies that you have the necessary
permissions to create the temporary file used by the setup command.1 This
command is rarely used from the command line, and is more useful in scripts
where a failed setup could cause the script to abort. The full command
description and option list is in section 23.7 ups exist. The command syntax
with some commonly used options is:

% ups exist [-f <flavor>] [<chainFlag>] [-j] <product> \
[<version>]

When issued from the command line, it returns no output if the command
succeeds. In the C shell family ups exist sets the $status variable to 0 if
it was able to create the temporary file, or to 1 for error. In the Bourne shell
family, it sets the $? variable similarly. As an example, we can run ups
list (not shown here) and find that there is a current instance of the product
tex for the flavor IRIX+6 but not for IRIX+6.2. Running ups exist for
each flavor, we see that the variables get set accordingly. For the C shell
family:

1. Specifically, it determines whether setup can create the temporary file. If so, it
creates it, but it does not execute it.

Maintaining a UPS Database 11-21

% ups exist tex -f IRIX+6; echo $status

0

% ups exist tex -f IRIX+6.2; echo $status

1

For the Bourne shell family:

$ ups exist tex -f IRIX+6; echo $?

0

$ ups exist tex -f IRIX+6.2; echo $?

1

To run this on a product distribution node, use the corresponding command
upd exist, documented in section 24.5 upd exist.

11.12 Troubleshooting

This section provides a few hints if things don’t seem to work after
declaring/removing/changing a product, or otherwise modifying files in a UPS
database.

• If the $PATH goes away, restore it by running:

 % setup setpath

 and check if the pathSet function is used in the table file -- if it is set
wrong, this may be the cause.

• To print out diagnostic information about what might be wrong with a
product declaration, run ups verify:

 % ups verify -a <product> [<version>]

• Try setting up just the main product and none of its dependencies. This
should help determine which file has the problem, the main one or a
dependency. Use -j in the setup command:

 % setup -j <product>

• Print out verbose information using the -v option with setup:

 % setup -v <product>

 To get progressively more information, use multiple v’s, e.g., -vv,
-vvv (up to four).

• Check file permissions. Any scripts called by the table file must be both
readable and executable. The product executable(s) must of course be
executable. The product database files must be readable.

• To examine the temporary file that the setup command creates and
sources, run the command:

11-22 Maintaining a UPS Database

 % ups setup <product> [<version>]

 This returns the path of this temporary file, and you can then go look at
the file. For example:

 % ups setup ocs

 /var/tmp/aaaa00273

• For most UPS commands, the -s option can be used to simulate the
command (i.e., create the temporary file) without executing it. It also
returns the path of the temporary file it created, for example:

 % setup -s -z /products/ups_database/upsII/main
xpdf

 INFORMATIONAL: Name of created temp file is
/var/tmp/aaaa005Mt

• If home directories move or if older versions of products have been
deleted, you might want to prevent execution of unsetup files prior to a
subsequent setup. In this case, don’t unsetup the product. Just setup
the product again using -k:

 % setup -k <product>

